ASMB,R,L,C ** RT TIME MODULE ** HED REAL TIME TIME MODULE * NAME: RTIME * SOURCE: 92060-18014 * RELOC: 92060-16014 * PGMR: G.A.A. * * *************************************************************** * * (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1975. ALL RIGHTS * * * RESERVED. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED, * * * REPRODUCED OR TRANSLATED TO ANOTHER PROGRAM LANGUAGE WITHOUT* * * THE PRIOR WRITTEN CONSENT OF HEWLETT-PACKARD COMPANY. * * *************************************************************** * NAM RTIME,0 92060-16014 REV.1710 770131 * SUP ******************************************************************** * * ***** AMD ***** JUL,73 * * ******************************************************************** * * RTIME ENTRY POINT NAMES * ENT $TADD,$CLCK,$TREM,$TIME,$TIMV ENT $ETTM,$TIMR,$ONTM,$TMRQ,$SCLK ENT $BATM * * RTIME EXTERNAL REFERENCE NAMES * EXT $INER,$DEVT,$LIST,$XEQ EXT $ERMG,$MESS,$SYMG,$IDSM EXT $WORK * ******************************************************************** * * THE RTIME MODULE OF HP2100 REAL TIME EXECUTIVE CONSISTS OF * * * 1. TIME PROCESSOR ROUTINES * * 2. CLOCK START UP ROUTINE. * * ******************************************************************** HED REAL TIME CLOCK-TIME LIST PROCESSING ******************************************************************** * THE REAL TIME CLOCK PROCESSOR SECTION OF HP-2100 REAL TIME* * EXECUTIVE HANDLES ALL TIME DEPENDENT FUNCTIONS: * * 1. INCREMENT REAL TIME CLOCK VALUES EVERY 10 MILLISECOND. * * 2. SCHEDULE PROGRAMS AT THE REQUESTED TIME AND COMPUTE ITS* * NEXT START TIME. * * 3. ADD PROGRAMS TO THE TIME LIST. * * 4. REMOVE PROGRAMS FROM THE TIME LIST. * * 5. OUTPUT CURRENT SYSTEM TIME TO USER ARRAY. * * 6. SET ID SEGMENT VALUES AS REQUESTED BY USER. * ******************************************************************** SPC 1 * THE $CLCK ROUTINE FUNCTIONS AS FOLLOWS: * * THE ROUTINE IS ENTERED EVERY 10 MILLISECOND DUE * * TO TIME BASE GENERATOR INTERRUPTS. * * THE TIME VALUE IS INCREMENTED BY 10 MILLISECONDS. * * THE TIME VALUES OF EACH PROGRAM IN TIME LIST IS * * COMPARED TO THE CURRENT TIME. IF THE TIMES * * COMPARE AND THE PROGRAM IS DORMANT, A SCHEDULE * * REQUEST IS MADE VIA LIST PROCESSOR. REGARDLESS * * OF PROGRAM STATUS, THE NEXT START TIME IS * * COMPUTED UNLESS THE MULTIPLE VALUE IS ZERO- * * WHICH MEANS THAT THE PROGRAM IS TO BE REMOVED * * FROM TIME LIST. * * THE TIME-OUT CLOCKS FOR ALL ACTIVE DEVICES ARE * UPDATED. IF ANY DEVICE HAS TIMED-OUT, * RTIOC IS ENTERED TO PROCESS THE CONDITION. * * $CLCK ISZ $TIME STEP THE LOW ORDER TIME VALUE JMP CL010 GO TO PROCESS LISTS ISZ $TIME+1 STEP THE HIGH ORDER TIME VALUE JMP CL010 GO TO PROCESS LISTS LDA RS1 RESET THE COUNTER LDB RS2 TO THE FULL STA $TIME DAYS WORTH OF STB $TIME+1 OF TENS OF MS. ISZ $TIME+2 STEP THE DAYS/YEARS COUNTER * * CHECK IF TIME TO SCHEDULE PROGRAM * CL010 LDB TLIST TIME LIST CL011 CLE,SZB,RSS IF THRU PROCESSING IT, GO JMP TOBAT PROCESS BATCH TIME-OUT STB POINT SAVE TIME LINK ADB D2 B NOW PTS TO IDSEG TIME VAULE DLD B,I GET THE SCHEDULE TIME CPA $TIME IF BOTH WORDS MATCH CCE THEN CPB $TIME+1 THE SEZ,RSS TIME IS JMP CH010 JSB TMSCH NOW SO SCHEDULE THE PROG. * * INCREMENT TO NEXT PROGRAM IN LIST * CH010 LDB POINT,I GET ADDR OF NEXT PROG IN LIST JMP CL011 GO TO COMPARE NEXT PROG IN LIST * * IF CURRENT PGM IS BATCH THEN STEP THE TIMER * TOBAT LDB XEQT GET THE BATCH BIT SZB IF NO CURRENT PGM SKIP CPB DD.RT IF CURRENT PGM IS D.RTR DO NO TIME JMP IOTOP BUT GO DO DEVICE TIME OUTS * CPB $IDSM IF SMP JMP IOTOP ADB D20 TO LDA B,I GET THE BATCH FLAG SSA,RSS IF NOT BATCH JMP IOTOP SKIP TEST * ISZ $BATM STEP BATCH TIMER JMP IOTOP IF NO ROLL OVER EXIT * ISZ $BATM+1 ELSE STEP NEXT WORD JMP IOTOP IF NO ROLL OVER SKIP * RAL PUT FATHER BIT IN 15. SSA IF THIS IS A SON JMP ABOR THEN ABORT HIM * RAR RESTORE A IOR B10K SET THE BREAK FLAG STA B,I AND RESET THE WORD JMP IOTOP CONTINUE WITH TIME OUTS * ABOR LDA ATI GET THE TI ABORT MESSAGE LDB BLANK JSB $ERMG GO ABORT HIM * * PROCESS DEVICE TIME-OUT CLOCKS * IOTOP LDA EQT# SET NEGATIVE OF CMA,INA NUMBER OF EQT STA $TIMV ENTRIES FOR INDEX LDA EQTA POINT TO WORD 15 IOTO2 ADA D14 OF FIRST EQT ENTRY LDB A,I LOAD WORKING CLOCK- SZB IS IT ACTIVE? ISZ A,I YES: INCREMENT IT INA,RSS IT HAS NOT TIMED-OUT JMP $DEVT GO TO TIME-OUT PROCESSOR ISZ $TIMV THRU? JMP IOTO2 NO: GO DO NEXT ONE JMP $XEQ YES; NO TIME-OUTS-RETURN SPC 1 D20 DEC 20 M7777 OCT 7777 RS1 OCT 25000 RS2 OCT 177574 PRS1 OCT 153000 PRS2 OCT 203 BLANK ASC 1, HED REAL TIME CLOCK SCHEDULE ON TIME ROUTINE * * PROGRAM TO BE SCHEDULED * * THE TMSCH ROUTINE SCHEDULES THE PROGRAM IF DORMANT * THEN COMPUTES ITS NEXT SCHEDULE TIME FROM ITS * RES CODE AND MULT FACTOR IN ITS ID-SEGMENT. * IF THE RES CODE IS ZERO THE PROGRAM IS REMOVED FROM * THE TIME LIST. * * THE CALLING SEQUENCE IS: * SET POINT TO THE ADDRESS OF THE TIME LINK WORD * JSB TMSCH * TMSCH NOP CCB COMPUTE THE STATUS ADDRESS ADB POINT LDA B,I GET THE STATUS AND D15 GET THE LOW BITS SZA IF NOT DORMANT JMP CH026 FORGIT IT ADB DM15 ELSE SET B TO THE ID-SEG ADDRESS JSB $LIST CALL LIST PROCESSOR TO SCHED PROG OCT 401 THE PROGRAM * * CHECK IF NEXT SCHEDULE TIME TO BE COMPUTED * CH026 LDB POINT INB LDA B,I RES CODE/MULT FACTOR AND M7777 SZA,RSS IF ZERO, THEN NO NEW START TIME JMP CH040 GO REMOVE PROG FROM LIST STA TEMP SAVE MULTIPLICATION FACTOR JSB TUDAT GO UPDATE THE SCHEDULE TIME JMP TMSCH,I RETURN * * REMOVE PROGRAM FROM TIME LIST * CH040 LDA B10K CLEAR THE RESOLUTION TOO. STA B,I AND RESET IN THE ID-SEGMENT. LDB POINT VALUE OF TLINK JSB $TREM GO TO REMOVE PROGRAM JMP TMSCH,I GO TO PROCESS NEXT PROGRAM HED REAL TIME CLOCK PROCESSING ID-TIME UPDATE * TUDAT USES THE RES AND MULT FROM THE ID-SEGMENT TO * UPDATE THE EXECUTE TIME OF THE PROGRAM WHOES ID- * SEGMENT RESOLUTION CODE ADDRESS IS IN B. * * CALLING SEQUENCE: * * SET TEMP TO THE MULT FACTOR * SET B TO THE RES CODE ADDRESS * JSB TUDAT * TUDAT DEF SETMS ENTRY POINT LDA B,I GET THE RES CODE TO A INB SET STB TEMP1 TEMPS TO THE TIME INB ADDRESSES STB TEMP2 IN THE ID-SEGMENT RAL,CLE,SLA,RAL IF HOURS JMP HR GO DO SPECIAL HOURS UPDATE RAL,CLE ELSE SET UP AND D7 FOR THE APPROPIATE ADA TTAB BASE LDA A,I AND MULTIPLY BY THE MULT. CH030 MPY TEMP CH031 ADA TEMP1,I ADD THE CURRENT VALUE SEZ IF OVERFLOW INB STEP B ADB TEMP2,I ADD THE HIGH BITS. STA TEMP1,I RESTORE THE NEW TIME STB TEMP2,I TO THE ID-SEG. CLE,SSB IF NEGATIVE RESULT THEN JMP TUDAT,I EXIT * LDA RS1 POSITIVE RESULT SO ADD NEG. OF LDB RS2 DAY TO MAKE NEGATIVE JMP CH031 * HR LDA TEMP FOR HOURS FIRST CLB INSURE LESS THAN DIV D24 ONE DAY LDA B RESULT IS MODULO 24 MPY D15 NOW SET UP TO MULTIPLY BY 60,000 STA TEMP IN TWO STEPS TO PREVENT OVERFLOW LDA D24K FIRST BY 15, JMP CH030 AND NEXT BY 24,000 * $BATM NOP NOP TLIST NOP TOP OF TIME SCHEDULE LIST $TIME OCT 16000 TIME OF DAT SET TO 8:00 AND OCT 177650 DAY AND YEAR TO APPROX. DAYS OCT 4552 RELEASE DATE. TTAB DEF * TTAB1 DEC 1 TTAB2 DEC 100 TTAB3 DEC 6000 D24K DEC 24000 D2 DEC 2 D7 DEC 7 D14 DEC 14 D15 DEC 15 D16 DEC 16 D24 DEC 24 DM15 DEC -15 SPC 4 * * SYSTEM START TBG ROUTINE * * THE $SCLK ROUTINE STARTS THE CLOCK PROVIDES * AN ENTRY POINT TO AID THE POWERFAIL ROUTINE. * * ON FIRST ENTRY THIS ROUTINE: * * 1. CONFIGURES IT SELF * 2. STARTS THE TBG. * 3. PRINTS "SET TIME" * 4. EXITS TO THE DISPATCHER. * * ON SUBSEQUENT ENTRIES IT IS A SUBROUTINE TO RESTART * TIME BASE GENERATOR. * $SCLK JMP CONFI GO CONFIGURE ON FIRST ENTRY LDA D2 PROGRAM THE TBG FOR 10'S OF MS. OTATB OTA 0 STCTB OCT 1100 CONFIGURED TO A STC TBG,C STFTB OCT 1600 CONFIGURED TO A STF TBG JMP $SCLK,I RETURN SPC 2 CONFI LDA TBG CONFIGURE THE TBG TEMP IOR OTATB MAKE AN OTA TBG TEMP1 STA OTATB SET IT TEMP2 IOR STCTB FORM AN STC TBG,C TCC STA STCTB SET THE STC XOR STFTB SET UP THE STF STA STFTB TLINC JSB $SCLK START THE TBG POINT LDA TUDAT SEND THE DD.RT STB DD.RT SAVE D.RTR ID-SEG. ADDRESS JSB $SYMG SET TIME JMP $XEQ MESSAGE AND GO TO THE DISPATCHER SPC 2 SETMS DEC -10 LENGTH OF SET TIME MESSAGE OCT 6412 PUT CR/LF OUT FIRST ASC 2,SET TIME ATI ASC 1,TI TI USED BY BATCH TIMER HED $TIMV ROUTINE TO GET CURRENT SYSTEM TIME * THE $TIMV ROUTINE CONVERTS THE CURRENT REAL TIME VALUES * * AND STORES THE VALUES INTO A USER SPECIFIED BUFFER. * * * * ROUTINE TO PROVIDE CURRENT TIME * CALLING SEQUENCE * DLD TIME PUT TIME IN A AND B REGS. * JSB $TIMV * RQP2 CONTAINS BEGIN ADDRESS OF 5 WORD BUFFER * RQP3 (OPTIONAL) CONTAINS ADDRESS OF YEAR BUFFER * ON RETURN, * ARRAY(1) = TENS OF MILLISECOND * ARRAY(2) = SECONDS * ARRAY(3) = MINUTES * ARRAY(4) = HOURS * ARRAY(5) = DAYS * RQP3,I = YEAR (197X) * * E IS SET * A IS THE YEAR * $TIMV ASC 1,ME ENTRY/EXIT (END OF SET TIME MSS.) CLE CLE FOR ADDITION ADA PRS1 ADD POSITIVE 24 HRS. SEZ TO GET A POSITIVE INB TIME ADB PRS2 DIV TTAB3 DIVIDE BY 6000 STA RQP4 SAVE MIN/HR ASR 16 POSITION B (SEC/10MS) FOR DIVIDE DIV TTAB2 DIVIDE BY 100 TO GET SEC/10MS STB RQP2,I SET 10MS VALUE ISZ RQP2 STEP ADDRESS POINTER STA RQP2,I SET SEC. VALUE ISZ RQP2 STEP TO MIN. ADDRESS. CLB SET UP FOR DIVIDE LDA RQP4 FETCH MIN/HR DIV D60 SEPERATE STB RQP2,I SET MINUTES ISZ RQP2 STEP TO HR. ADDRESS STA RQP2,I SET HRS ISZ RQP2 STEP ADDRESS CLB SET B FOR DIVIDE LDA $TIME+2 GET DAYS FORM THE TIME DIV D365 SEPERATE DAYS AND YEARS CCE,INB STEP DAYS TO 1-365 FROM 0-364 STB RQP2,I SET DAYS ADA D1970 ADD THE BASE YEAR TO YEAR STA RQP3,I SET YEAR JMP $TIMV,I RETURN SPC 2 D60 DEC 60 D365 DEC 365 D1970 DEC 1970 BASE YEAR DM197 DEC -1970 NEG OF BASE YEAR HED REAL TIME ON REQUEST FOR TIME SCHED PROGRAM * ON REQUEST CONTINUATOR * * IF CURRENT TIME VALUES ARE ZERO OR NOW IS CODED THEN * THE CURRENT TIME IS PUT IN THE ID-SEG. AND R/M USED * TO COMPUTE THE NEXT TIME. * * IF CURRENT TIME VALUES ARE NOT ZERO THE PROGRAM IS * JUST PUT IN THE TIME LIST. * * CALLING SEQUENCE * * A=-1 IF NOW OPTION * A#-1 IF NOT NOW BUT PUT IN TIME LIST * B=ID-SEGMENT TIME ADDRESS. * * JMP $ONTM * $ONTM STB DLDAD SET LOAD ADDRESS STA TCC SET NOW FLAG FOR LATER INA,SZA,RSS IF NOW SKIP LOAD JMP NOW DLD DLDAD,I GET THE CURRENT TIME VALUES DLDAD EQU *-1 SZA,RSS IF TIME NOT ZERO SZB THEN JMP TIMIN THEN GO PUT IN TIME LIST NOW DLD $TIME GET CURRENT TIME DST DLDAD,I AND SET IN THE ID-SEG TIMIN LDB DM2 COMPUTE TIME LIST ADDRESS ADB DLDAD AND STB POINT AND SET FOR LIST ROUTINE JSB $TADD ADD PROG TO TIME LIST. ISZ TCC SKIP IF NOW RSS JSB TMSCH SCHEDULE THE PROG. AND UPDATE MESEX CLA SET A FOR NO ERROR LDB $MESS GET RETURN ADDRESS JMP B,I RETURN THRU $MESS ROUTINE HED $TIMR ROUTINE SETS UP ID SEGMENT TIME VALUES * THE $TIMR ROUTINE WHICH ALLOWS USER TO ENTER TIME VALUES * * INTO AN ID SEGMENT FUNCTIONS AS FOLLOWS: * * IF PROG VALUE IS ZERO, THEN CURRENT EXECUTING PROG. * * AND IF NON-ZERO, THEN SEARCH FOR ID SEGMENT * * ADDRESS. * * IF RESOLUTION CODE IS NON-ZERO, THEN RES/MULT WORD * * STORED. THE NEXT VALUE IS CHECKED FOR + OR -. * * IF PLUS, THEN NEXT START TIME VALUES GIVEN AND * * ARE STORED AND PROGRAM ENTERED INTO TIME LIST. * * IF MINUS, THEN THE COMPLEMENT OF VALUE IS ADDED* * TO THE CURRENT TIME AND ENTERED INTO THE ID * * SEGMENT. IF PROG VALUE IS ZERO, THIS IS TO BE A* * TIME DELAY OF CURRENT PROGRAM AND THUS PROGRAM * * IS SET DORMANT VIA LINK PROCESSOR BUT POINT OF * * SUSPENSION IS NOT CLEARED. IF PROG VALUE IS NON* * ZERO, THEN PROGRAM IS ENTERED INTO TIME LIST. * * THIS IS METHOD FOR SPECIFYING AN INITIAL OFFSET* * TIME. * * * ROUTINE TO SET ID SEGMENT TIME VALUES * CALLING SEQUENCE * JSB EXEC * DEF *+6 OR DEF *+9 * DEF REQUEST CODE ADDRESS RQP1 * DEF PROG RQP2 * DEF RES RQP3 * DEF MULT RQP4 * DEF OFFSET OR DEF HRS RQP5 * DEF MINS RQP6 * DEF SECS RQP7 * DEF TENS OF MSEC RQP8 * WHERE * PROG = 0 IF CURRENTLY EXECUTING * = ADDRESS OF PROGRAM NAME * RES = 1 FOR 10 MILLISECOND RESOLUTION * = 2 FOR SECONDS RESOLUTION LIST * = 3 FOR MINUTES RESOLUTION LIST * = 4 FOR HOURS RESOLUTION LIST * MULT = 0 FOR N0 MULTIPLE VALUE * = N A POSITIVE INTEGER FOR COMPUTING * NEXT SCHEDULE TIME * OFFSET= M A NEGATIVE INTEGER FOR COMPUTING INITIAL * OFFSET TIME * HRS= START TIME HOURS * MINS= START TIME MINUTES * SECS= START TIME SECONDS * TENS= START TIME TENS OF MILLISECONDS * * EXEC PRE-PROCESSOR CHECKS FOR RESOLUTION CODE * ERRORS AND FINDS THE ID-SEGMENT ADDRESS. * * CALLING SEQUENCE: * * LDB ID-SEGMENT ADDRESS * JMP $TIMR SKP $TIMR ADB D16 GET ADDRESS OF TIME LINK STB TCC AND SAVE IT INB STEP TO RESOLUTION ADDRESS STB TEMP1 AND SAVE LDA B,I GET RESOLUTION CODE/T/MULT INB STEP TO TIME LOCATION STB DSTAD SAVE THE ADDRESS * ALF,ERA SAVE BIT 12 SINCE PROGRAM MAY LDA RQP4,I ALREADY BE IN THE TIME LIST ALF,ERA COMBINE MULT AND SAVED T-BIT LDB RQP3,I RESOLUTION TO B LSR 3 SHIFT RESULT TO A STA TEMP1,I SET IT IN THE ID-SEG. LDA RQP5,I NEGATIVE IF OFFSET SSA,RSS POSITIVE IF START TIME JMP TI100 CMA,INA SET POSITIVE AND STA TEMP SAVE IN TEMP LDA RQP2,I CHECK IF CURRENT XEQ PROGRAM SZA JMP TI012 NO * LDB XEQT YES, SET THE SAVE- STB $WORK RESOURCES BIT IN STA XEQT THE PROGRAM'S STATUS ADB D15 WORD. LDA B,I (CLEAR XEQT SO THAT $LIST WILL IOR B200 SET THE NP BIT IF THE USER IS STA B,I MODIFING ITS ON TIME VALUES). JSB $LIST MAKE PROGRAM DORMANT OCT 300 TI012 LDA $TIME GET THE CURRENT TIME LDB $TIME+1 AND SET DST DSTAD,I IT IN THE ID-SEG DSTAD EQU *-1 LDB TEMP1 GET THE RES. CODE ADDRESS TO B JSB TUDAT UPDATE THE TIME * TI015 LDB TCC JSB $TADD ENTER PROG INTO TIME LIST JMP $XEQ DONE - EXIT TO DISPATCHER * * GIVEN START TIME * TI100 LDB DSTAD SET B TO THE TIME ADDRESS AND JSB $ETTM GO TO STORE VALUES IN ID SEGMENT JMP TI015 GO PUT PROG IN TIME LIST * DM2 DEC -2 B200 OCT 200 HED REAL TIME CLOCK PROCESSOR SET TIME IN ID-SEG * $ETTM SETS A TIME IN THE REFERENCED ID-SEGMENT. * * CALLING SEQUENCE * * RQP5,I=HOURS * RQP6,I=MINUTES * RQP7,I=SECONDS * RQP8,I=TENS OF MS. * * B=TIME ADDRESS IN THE ID-SEG. * $ETTM NOP ENTRY POINT STB DSTA2 SAVE THE ID-SEG. ADDRESS LDA RQP7,I GET SECONDS MPY TTAB2 CONVERT TO MS (MPY D100) ADA RQP8,I ADD THE MS VALUE AND STA RQP8 AND SAVE LDA RQP5,I GET HOURS MPY D60 CONVERT TO MINUTES ADA RQP6,I ADD MINUTES MPY TTAB3 CONVERT MINUTES TO MS (MPY D6000) CLE PREPARE FOR ADD ADA RQP8 ADD MS VALUE SEZ IF OVERFLOW INB STEP HIGH PART SET01 CLE,SSB IF POSITIVE JMP SET02 ADA RS1 SUBTRACT 24 HRS SEZ,CLE UNTIL INB ADB RS2 IT IS JMP SET01 NEGATIVE SET02 DST DSTA2,I SET THE VALUE IN THE ID-SEG. DSTA2 EQU *-1 JMP $ETTM,I RETURN HED ADDITION OF PROGRAM TO TIME RESOLUTION CODE LIST * THE $TADD ROUTINE FUNCTIONS AS FOLLOWS: * * IF RESOLUTION CODE IS ZERO, THEN EXIT * * IF NON-ZERO RESOLUTION, AND PROGRAM NOT IN TIME LIST* * (BIT 12 OF RES/T/MULT 0), THEN SET BIT 12 OF * * MULT WORD TO SIGNIFY THAT IT IS IN TIME LIST. * * IF TIME LIST IS NULL, THEN SET IT TO POINT TO * * PROGRAM TIME LINK AND SET TLINK TO ZERO. * * IF PROGRAM NOT IN LIST, THEN IT IS ADDED TO * * TOP OF TIME LIST AND ITS TLINK VALUE MADE * * TO POINT TO THE PREVIOUS TOP OF LIST * * PROGRAM. * * * * * ADDING A PROGRAM TO A TIME RESOLUTION CODE LIST * CALLING SEQUENCE * LDB ADDRESS OF ID SEGMENT TLINK VALUE * JSB $TADD * $TADD NOP STB TLINC SAVE TLINK ADDRESS INB INCR TO RES CODE/MULT FACTOR ADD LDA B,I ALF,CLE,ERA AND D7 SZA,RSS JMP $TADD,I EXIT SEZ PROG IN TIME LIST? JMP $TADD,I YES, SO EXIT * LDA B,I IOR B10K SET T BIT STA B,I LDB TLIST LOAD VALUE OF TOP OF LIST LDA TLINC SET LINK OF NEW PROG TO PREVIOUS STB A,I OF TIME LIST STA TLIST SET TOP OF TIME LIST TO NEW PROG TLINK ADDRESS JMP $TADD,I RETURN HED REMOVE A PROGRAM FROM TIME LIST * * * THE $TREM ROUTINE FUNCTIONS AS FOLLOWS: * * IF PROGRAM NOT IN TIME LIST, THEN EXIT * * IF PROGRAM IN TIME LIST, THEN CLEAR BIT 12 OF * * RES/T/MULT TO INDICATE NOT IN TIME LIST. * * A SEARCH IS MADE OF THE TIME LIST PROGRAMS * * UNTIL PROGRAM FOUND OR END OF LIST. THE * * TLINK VALUES ARE CHANGED AS NECESSARY. * * * * * CALLING SEQUENCE * LDB TLINK ADDRESS OF ID SEGMENT * JSB $TREM * $TREM NOP ENTRY/EXIT STB TLINC COMPUTE LIST ADDRESS INB LDA B,I CHECK IF PROGRAM IS IN TIME LIST AND B10K SZA,RSS JMP $TREM,I NO, SO EXIT XOR B,I CLEAR T-BIT STA B,I LDA DTLST GET ADDR OF TOP OF LIST PNTR * TR010 LDB A,I GET CURRENT TOP OF LIST CPB TLINC IS THIS THE PROG? JMP TR030 YES SZB,RSS END OF LIST? JMP $TREM,I YES, RETURN STB A SAVE ADDR OF CURRENT LINKWORD JMP TR010 GO CHECK NEXT PROG * TR030 LDB B,I LINK NEXT PROG STB A,I TO PREV PROG TO REMOVE JMP $TREM,I RETURN SPC 1 DTLST DEF TLIST B10K OCT 10000 HED MESSAGE PROCESSOR TM REQUEST COMPLETION * THIS ROUTINE COMPLETES THE SET TIME REQUEST * * CALLING SEQUENCE: * * LDB DEFP1 SET B TO ADDRESS OF PRAM LIST * JMP $TMRQ * $TMRQ LDA DM6 SET UP PRAM ADDRESSES ON STA TEMP THE BASE PAGE LDA DRQP3 TM1 STB A,I ADB D4 PRAMS SEPERATED BY FOUR WORDS INA ISZ TEMP DONE? JMP TM1 NO * LDA RQP3,I GET YEAR ADA DM197 SUBTRACT THE BASE MPY D365 MULTIPLY BY DAYS PER YEAR ADA RQP4,I ADD THE DAY CMB SET B TO -1 IF LEGAL RESULT ADA B SUBRTACT ONE FROM DAY INB,SZB IF B WAS NOT ZERO AFTER MULT. THEN JMP $INER INPUT ERROR STA $TIME+2 SET DAY COUNTER * LDB DTIME GET TIME ADDRESS TO B JSB $ETTM SET THE TIME JMP MESEX EXIT TO MESSAGE PROCESSOR SPC 2 DM6 DEC -6 DRQP3 DEF RQP3 D4 DEC 4 DTIME DEF $TIME HED ** SYSTEM BASE PAGE COMMUNICATION AREA ** * * *** SYSTEM BASE PAGE COMMUNICATION AREA *** * . EQU 1650B ESTABLISH ORIGIN OF AREA * * SYSTEM TABLE DEFINITION * * EQTA EQU .+0 FWA OF EQUIPMENT TABLE EQT# EQU .+1 # OF EQT ENTRIES * DRT EQU .+2 FWA OF DEVICE REFERENCE TABLE LUMAX EQU .+3 # OF LOGICAL UNITS (IN DRT) * INTBA EQU .+4 FWA OF INTERRUPT TABLE INTLG EQU .+5 # OF INTERRUPT TABLE ENTRIES * TAT EQU .+6 FWA OF TRACK ASSIGNMENT TABLE * KEYWD EQU .+7 FWA OF KEYWORD BLOCK * * I/O MODULE/DRIVER COMMUNICATION * EQT1 EQU .+8 ADDRESSES EQT2 EQU .+9 EQT3 EQU .+10 OF EQT4 EQU .+11 EQT5 EQU .+12 CURRENT EQT6 EQU .+13 EQT7 EQU .+14 15-WORD EQT8 EQU .+15 EQT9 EQU .+16 EQT EQT10 EQU .+17 EQT11 EQU .+18 ENTRY EQT12 EQU .+81 EQT13 EQU .+82 EQT14 EQU .+83 EQT15 EQU .+84 * CHAN EQU .+19 CURRENT DMA CHANNEL # TBG EQU .+20 I/O ADDRESS OF TIME-BASE CARD SYSTY EQU .+21 EQT ENTRY ADDRESS OF SYSTEM TTY * * SYSTEM REQUEST PROCESSOR /'EXEC' COMMUNICATION * * RQCNT EQU .+22 # OF REQUEST PARAMETERS -1 RQRTN EQU .+23 RETURN POINT ADDRESS RQP1 EQU .+24 ADDRESSES RQP2 EQU .+25 RQP3 EQU .+26 OF REQUEST RQP4 EQU .+27 RQP5 EQU .+28 PARAMETERS RQP6 EQU .+29 RQP7 EQU .+30 (SET FOR MAXIMUM OF RQP8 EQU .+31 8 PARAMETERS) * * DEFINITION OF SYSTEM LISTS (QUEUES) * * DORMT EQU .+32 ADDRESS OF 'DORMANT' LIST, SKEDD EQU .+33 'SCHEDULE' LIST, SUSP3 EQU .+36 'AVAILABLE MEMORY' LIST, SUSP4 EQU .+37 'DISC ALLOCATION' LIST, SUSP5 EQU .+38 'OPERATOR SUSPEND' LIST * * DEFINITION OF EXECUTING PROGRAM ID SEGMENT' * * XEQT EQU .+39 ID SEGMENT ADDR. OF CURRENT PROG. XLINK EQU .+40 'LINKAGE' XTEMP EQU .+41 'TEMPORARY (5-WORDS) XPRIO EQU .+46 'PRIORITY' WORD XPENT EQU .+47 'PRIMARY ENTRY POINT' XSUSP EQU .+48 'POINT OF SUSPENSION' XA EQU .+49 'A REGISTER' AT SUSPENSION XB EQU .+50 'B REGISTER' XEO EQU .+51 'E AND OVERFLOW * * SYSTEM MODULE COMMUNICATION FLAGS * * OPATN EQU .+52 OPERATOR/KEYBOARD ATTENTION FLAG OPFLG EQU .+53 OPERATOR COMMUNICATION FLAG SWAP EQU .+54 RT DISC RESIDENT SWAPPING FLAG DUMMY EQU .+55 I/O ADDRESS OF DUMMY INT. CARD IDSDA EQU .+56 DISC ADDR. OF FIRST ID SEGMENT IDSDP EQU .+57 -POSITION WITHIN SECTOR * * DEFINITION OF MEMORY ALLOCATION BASES * * BPA1 EQU .+58 FWA R/T DISC RES. BP LINK AREA BPA2 EQU .+59 LWA R/T DISC RES. BP LINK AREA BPA3 EQU .+60 FWA BKG DISC RES. BP LINK AREA LBORG EQU .+61 FWA OF RESIDENT LIBRARY AREA RTORG EQU .+62 FWA OF REAL-TIME AREA RTCOM EQU .+63 LENGTH OF REAL TIME COMMON AREA RTDRA EQU .+64 FWA OF R/T DISC RESIDENT AREA AVMEM EQU .+65 FWA OF SYSTEM AVAILABLE MEMORY BKORG EQU .+66 FWA OF BACKGROUND AREA BKCOM EQU .+67 LENGTH OF BACKGROUND COMMON AREA BKDRA EQU .+68 FWA OF BKG DISC RESIDENT AREA * * UTILITY PARAMETERS * TATLG EQU .+69 LENGTH OF TRACK ASSIGNMENT TABLE TATSD EQU .+70 # OF TRACKS ON SYSTEM DISC SECT2 EQU .+71 # SECTORS/TRACK ON LU 2 (SYSTEM) SECT3 EQU .+72 # SECTORS/TRACK ON LU 3 (AUX.) * DSCLB EQU .+73 DISC ADDR OF RES LIB ENTRY PTS DSCLN EQU .+74 # OF RES LIB ENTRY POINTS DSCUT EQU .+75 DISC ADDR OF RELOC UTILITY PROGS DSCUN EQU .+76 # OF RELOC UTILITY PROGS LGOTK EQU .+77 LOAD-N-GO: LU,STG TRACK,# OF TRKS LGOC EQU .+78 CURRENT LGO TRACK/SECTOR ADDRESS SFCUN EQU .+79 SOURCE FILE LU AND DISC ADDRESS MPTFL EQU .+80 MEMORY PROTECT ON/OFF FLAG (0/1) FENCE EQU .+85 MEM PROTECT FENCE ADDRESS * BKLWA EQU .+87 LWA OF MEMORY IN BACKGROUND * * FREG1 EQU LBORG FREG2 EQU RTORG FREG3 EQU BKORG FLG EQU OPFLG * A EQU 0B LOCATION OF A REGISTER B EQU 1B LOCATION OF B REGISTER ORG * PROGRAM LENGTH END $SCLK